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1 Introduction to Creep & Growth

Creep is the time-dependent, irreversible deformation that occurs at a low rate, at stresses below the
ultimate stress of the material. Non-hydrostatic stresses (i.e. shear stresses) are required for creep.
The kinds of creep relevant in cladding materials are (1) thermal creep, and (2) irradiation creep.
These deformation processes require elevated temperatures, and applied stresses. Both processes
are mediated by the motion of dislocations. Dislocations preferentially absorb either vacancies
or interstitials, causing them to climb over obstacles. In thermal creep, the higher temperature
causes high mobility of point defects, leading to a significant absorption rate of point defects by
dislocations, leading to dislocation motion. In irradiation creep, the high radiation flux causes a
supersaturation of point defects, that in turn leads to point defect absorption, and consequently
dislocation motion.

Irradiation growth is defined as the irradiation induced dimensional changes that take place in
the absence of applied stresses, and is caused by the partitioning of vacancies and interstitials among
two or more kinds of sinks. Each kind of sink produces strain in a different crystallographic direction,
such that the final deformation is anisotropic, and is volume conserved. In this phenomenon, the
high radiation flux causes the supersaturation of point defects. These point defects then tend to
aggregate into dislocation loops (either interstitial of vacancy). These loops then absorb more point
defects, thereby growing in size, and leading to macroscopic strain.

The two phenomena of creep and growth become coupled in polycrystalline materials. Growth in
a single grain is opposed by stresses caused by interaction of the growing grain with its neighbors
(that are also growing, but it in different directions). These stresses initiate and/or potentiate
irradiation creep. In extreme cases, such as accident scenarios, thermal creep becomes important.
Internal stresses in turn affect the diffusive characteristics of point defects within a grain, and
consequently affecting the phenomenon of growth. In this report, we examine the coupling between
creep and growth in a polycrystalline materials, and also look at the atomistic mechanisms that
contribute to these phenomena.

2 Atomistics

The underlying fundamental mechanism that governs the creep and growth rates is the absorption
of point defects (PDs) by sinks, such as dislocations, and dislocation loops. This fundamental
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mechanism is considered to be the unit process of creep, and growth. The creep (and growth) rate,
therefore, directly depends on the absorption rate of PDs by sinks. The individual character of sinks,
however, causes them to absorb PDs at different rates. Upon absorbing defects, the sinks themselves
evolve differently. The complex interplay between different absorption rates, distribution of sink
populations due to cold work, nucleation of new sinks, and sink evolution ultimately contributes to
the macroscopic creep and growth rate of the cladding.

We developed a framework that is capable of calculating absorption rates of PDs by sinks of
arbitrary shape and size, and a population of these sinks. Calculations based on this framework
can predict the constitutive law of single crystals, which can in turn inform mesoscale polycrystal
plasticity models. We focus our attention on zirconium, the most widely used element in cladding
material. PD types are restricted to single Self Interstitial Atoms (SIAs), and single vacancies (V),
which renders the analysis presented here in the low neutron flux regime: PDs are far more likely
to get absorbed by sinks, before they aggregate into defect clusters. Nevertheless, the framework
presented here can be extended to handle SIA clusters and V clusters, and reactions between them.
Here, we present an in-depth examination of (a) the polymorphism of single PDs, transitions
between different polymorphs, and their importance; (b) the influence of strains on transitions, and
consequently the mobility of PDs, and (c) the absorption rates of PDs by a variety of sinks, having
arbitrary shapes and sizes using an object-KMC that takes into account both (a) and (b).

2.1 Methods

The need for examining the polymorphism of single PDs arises from some important observations of
short-time molecular dynamics simulations of single SIAs in Zr. Firstly, a single SIA can exist in one
of many polymorphs, or forms. SIAs of different polymorphs have different diffusion characteristics
– e.g. a crowdion [1] is a one dimensional diffuser, aligned along a close packed direction. It has
a high diffusivity along its alignment direction, but zero diffusivity along all others. Secondly,
interconversion between polymorphs is seen frequently at most temperatures of interest. We have
observed, as have others [2], that diffusion of SIAs in Zr is overall three dimensional. However, the
3D trajectory of a single SIA is punctuated by brief periods where it transforms into a crowdion,
which then diffuses rapidly along a close packed direction, before transforming into one of the other
polymorphs. These two observations show that the polymorphism, and rate of transition between
polymorphs affect the overall diffusivity of a SIA, and consequently, the absorption rate of SIAs by
sinks.

Another important effect that we account for is the strain-induced change in mobility of PDs.
The local environment of a PD is affected by the strain field it experiences. The source of this strain
field can either be external, or due to a nearby sink, such as a dislocation. The strain field perturbs
the lattice atoms, and thereby changes the energy of the PD, and also the saddle point energies for
transitions associated with the PD. The strain-induced change in the potential energy landscape
can change the mobility of PDs in rather dramatic ways, and consequently, affects the absorption
rate of PDs by sinks. The strain-induced change in energy can be accounted for by computing the
dipole tensor G, a quantity that is characteristic of an atomistic configuration (either PD, or saddle
point). This allows us to account for the presence of an arbitrary strain field.

The first polymorph of a SIA was obtained by taking a perfect Zr lattice, placing a single addi-
tional atom in the octahedral position, and performing an energy minimization. This Octahedral
polymorph (O) of a SIA was shown to be the ground state for a SIA by Willaime [3], and is consis-
tent with our findings. For a vacancy (V), the first polymorph was obtained by removing an atom
from the center of the simulation cell, and performing an energy minimization. All polymorphs
were characterized using a scheme outlined by El-Mellouhi et al. [4], which we briefly describe. The
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coordination number of all atoms was computed using a cutoff distance of 3.34Å. All non-perfectly
coordinated atoms, along with atoms within a sphere of radius 3.4Å of the non-perfectly coordi-
nated atoms were considered to be part of the defect. The atoms in this defect were numbered, and
a connectivity graph based on the coordination analysis was generated, and stored in a database
for future reference.

Figure 1 outlines the procedure used to discover transitions out of a given polymorph, and
subsequently, all the different polymorphs. Starting from the minimized configuration of the poly-
morph, we ran high-temperature MD at 1100 K. Periodically, the “hot” point in the trajectory
was quenched, and examined for the occurrence of a transition. A transition was declared to have
occurred if the displacement of any atom between the original minimized configuration and the
quenched hot point was greater than 0.6 Å. The displacement vector of the defect associated with
this transition, dr, was recorded. The polymorph at the end point of the transition was character-
ized using the coordination analysis described above, and a connectivity graph was generated for
the end point. The connectivity graph of the end point was compared with all known connectivity
graphs, using the automorphism detector NAutY [5], an open–source package [6]. NAutY exam-
ines two supplied connectivity graphs and reports if the two graphs have identical topology. We
exploit this capability of NAutY to determine if two polymorphs are identical, barring rigid body
transformations, including mirroring. If the end point of the transition was not recognized, it was
classified as a new polymorph, and added to the database.

Each transition was characterized by computing the energy barrier using the nudged elastic
band (NEB) method [7]. This method uses a chain of configurations connecting the initial and final
states, with each configuration interacting with its neighbors on either side via a spring potential
(the elastic band). The chain is “nudged” so that the components of the spring force are zero in
directions perpendicular to the chain and components of the potential-induced gradient are zero
in the direction tangential to the chain. The tangent at each point along the chain was computed
using with the improved tangent estimation [8]. Upon convergence, the climbing image algorithm
[9] was used to eliminate the sliding problem [7], and get the saddle point configuration.

We continued running high temperature MD until no new transitions out of the polymorph
were discovered. We then repeated the procedure of running high temperature MD, transition
characterization, and polymorph identification on all the newly discovered polymorphs. We iterated
through this procedure until we were confident that we had discovered (a) all relevant polymorphs,
and (b) all possible transitions for each polymorph. We are currently in the process of quantifying
the confidence levels associated with this procedure..

As mentioned previously, the energetics of PDs, and transitions between polymorphs are affected
by strain fields. The change in energy of a PD, or a saddle point associated with a transition, due
to a strain ε is given by

∆E = −Gijεij (1)

where we have used the Einstein summation convention. In must be stressed that this value of ∆E
is the change in energy of the defect alone, and does not contain the contribution due to elastic
strain. Thus, in the procedure outlined below, the elastic contribution is always subtracted out. A
variety of methods to compute the dipole tensor are available in the literature. In this study, we
use Gillan’s strain derivative relation [10, 11], where we numerically extract the derivative of ∆E
from equation 1 with respect to each of the strain components as follows:

In order to compute the ij th component of the dipole tensor of a defect polymorph, we start
with a relaxed structure of the polymorph. The simulation box is first subjected to a far-field,
infinitesimal strain field component ∆εij > 0, with all other strain components set to zero. The

3



Run MD block

Transition

Compute barrier using NEB

End point
present in
database

Add polymorph to database

All relevant
transitions
detected

N

Y

N

N

Y

Y

END

Start with minimzed

polymorph

Figure 1: Flow chart illustrating the procedure used to discover polymorphs, and transitions be-
tween polymorphs.

boundary atoms are held fixed, while the rest of the structure is relaxed. The change in energy
between the two relaxed structures is measured, and denoted as ∆(∆E)+.

In order to compute the ij th component of the dipole tensor of the saddle point, the chain-of-
states from the NEB calculation was taken to be the starting point. All images on the chain were
subjected to an infinitesimal strain component ∆εij > 0. The boundary atoms of all images on the
chain were held fixed, and the NEB procedure was repeated to obtain a new saddle corresponding
to the strained chain-of-states. The change in energy between the strained and unstrained saddles
is measured, and denoted as ∆(∆E)+.

For both the polymorph, and saddle point, the energy change measurement is repeated with a
strain −∆εij , and the change in energy obtained in this case is denoted as ∆(∆E)−. The value of
Gij , for both the polymorph and saddle point, is then given as

Gij = −∆(∆E)+ −∆(∆E)−

2∆εij
(2)

The procedure is repeated for all components of the dipole tensor. We used ∆εij = 10−4 through-
out. Note that this method of computing G assumes that energy is linear with strain. It is
conceivable that higher order terms might need to be included in equation 1, particularly in high
strain situations.

2.2 Results

A single vacancy was observed to be capable of out-of-plane migration, and in-plane migration,
with a barrier of 0.723 eV, and 0.637 eV, respectively. A single SIA, on the other hand, is more
complex than a vacancy. It can exist in a variety of polymorphs, and shows a rich array of possible
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(d) (e) (f)

Figure 2: All possible polymorphs exhibited by a SIA. These configurations were carved out of
fully relaxed minima. In all images, the 〈112̄0〉 direction is from the atom on the farthest left, to
the atom on the farthest right. The basal plane is indicated in light red. The different polymorphs
are (a) Octahedral (O), (b) Basal Crowdion, (c) Basal Octahedral, (d) – (f) Split types 1 – 3.

transformations between polymorphs. Figure 2 shows the six different types of polymorphs a
SIA can exhibit. The ground state is the Octahedral (O) polymorph, shown in 2 (a). The other
polymorphs are Basal Crowdion (BC), Basal Octahedral (BO), and three different types of Split (S-
1, S-2, S-3). Three of the above polymorphs, viz. O, BO, and BC have been observed previously in
DFT studies [3], while the three types of Split seem unique to the Mendelev-Ackland #3 potential.
The polymorphism, possible transition, dipole tensor values, and displacements associated with
each transition for single vacancies, and SIAs are shown in table 1.

The catalog of transitions for SIAs was used in an object–KMC simulation, and we describe
some results from these simulations below. Similar simulations can be carried out for the vacancy.
We first looked at the random walk trajectory of a SIA in an otherwise perfect crystal. The
orientation of simulation axes with respect to crystal axes was chosen such that the X-axis was
aligned along a close–packed direction, and the Z-axis was aligned along the c-direction, as shown
in figure 3 (a). Figure 4 shows a plot of the mean square distance as a function of time, obtained
as the average of 300 trajectories. Diffusion of a SIA is isotropic in the basal plane, and anisotropic
overall. Increase in diffusivity due to an increase in temperature is seen, as expected.

We then ran a similar set of random walk trajectories, in the strained lattice, with εyy =
0.005. The effect of this strain is to introduce more free volume normal to the X-direction, and
therefore, the diffusivity along the X-direction is increased by an order of magnitude. In other
words, application of strain along the Y-direction breaks the symmetry of the basal plane, resulting
in fully anisotropic diffusion.

We also investigated the behavior of a SIA in the vicinity of an edge dislocation. As the strain
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Figure 3: Orientation of single crystal with respect to the coordinate axes
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Figure 4: Mean square distance of a SIA at two different temperatures, in an otherwise perfect
lattice. SIA diffusion is isotropic in the basal plane.
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Table 1: List of dipole tensor values G for all polymorphs, and transitions between polymorphs.
Also given are the defect displacement values associated with each transition. This table does not
include degeneracies due to crystal symmetry. Distances are in Å, while Energy and Gij values are
in eV. All SIA energies are relative to the ground state (Octahedral).

VACANCY

polymorph Energy G11 G22 G33 G23 G13 G12

Vacancy (V) 0.0000 -4.70 -4.66 -5.23 -0.02 0.00 0.03

Transition
Saddle PD Displacement

G11 G22 G33 G23 G13 G12Energy dx dy dz

V → V (Out-of-plane) 0.7227 0.00 1.87 2.58 -4.66 -6.74 -5.39 0.03 -0.01 2.83
V → V (In-plane) 0.6369 3.23 0.00 0.00 -8.75 -2.81 -5.64 -0.05 0.00 0.48

SELF INTERSTITIAL ATOM (SIA)

polymorph Energy G11 G22 G33 G23 G13 G12

Octahedral (O) 0.0000 10.53 10.15 12.66 0.27 -0.53 -0.22
Basal Crowdion (BC) 0.0925 11.96 9.53 7.26 -0.03 0.00 -0.02

Basal Octahedral (BO) 0.1173 9.77 9.68 5.05 -0.05 0.01 0.03
Split Type 1 (S-1) 0.0810 9.25 10.22 11.03 -0.03 -0.17 0.04
Split Type 2 (S-2) 0.1807 10.98 10.19 12.92 0.32 0.77 0.75
Split Type 3 (S-3) 0.1188 10.62 10.12 12.84 -0.18 -0.41 0.44

Transition
Saddle PD Displacement

G11 G22 G33 G23 G13 G12Energy dx dy dz

O → O 0.0230 -1.70 0.00 0.00 11.27 10.60 12.95 0.14 -0.01 0.02
O → S-1 0.0875 0.77 -0.05 -1.30 8.94 10.42 11.91 -0.21 0.05 -0.02
O → S-2 0.1819 -0.60 -1.32 -0.95 11.26 10.87 - -0.13 -0.57 -0.59
O → S-3 0.1197 -0.85 -0.67 -1.57 11.32 10.59 13.02 0.15 -0.56 -0.60

S-1 → BC 0.1269 -1.62 -0.31 0.00 12.40 9.69 8.14 1.50 2.89 1.55
S-2 → BC 0.1812 0.71 -0.70 -0.35 11.22 10.90 13.21 -0.13 2.50 2.47
S-2 → BO 0.1812 -0.25 -0.15 -0.35 11.66 9.41 9.41 1.35 0.02 0.01
S-3 → BC 0.1209 0.00 0.31 -0.28 11.58 9.28 9.33 -1.35 0.00 0.06
BC → BC 0.0954 3.23 0.00 0.00 11.80 9.60 7.26 -0.02 0.05 0.03
BC → BO 0.1191 0.00 -1.11 0.00 10.11 9.37 5.19 -0.05 0.01 0.03
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Figure 5: SIA diffusion in a strained lattice, with εyy = 0.5. This tensile strain breaks the symmetry
of the basal plane, resulting in fully anisotropic diffusion.

field induced by the edge dislocation is needed as input to the object KMC, we looked to anisotropic
elasticity to compute ε. For an edge dislocation in an HCP crystal with Burgers vector b = bx+by,
the displacement field is given as [12]:

ux = − bx
4π

(
tan−1

2xyλ sinφ

x2 − λ2y2
+

c̄′211 − c′212
2c̄′211c

′
66 sin 2φ

ln
q

t

)
− by

4πλc̄′11 sin 2φ

[
(c̄′11 − c′12) cosφ ln qt− (c̄′11 + c′12) sinφ tan−1

x2 sin 2φ

λ2y2 − x2 cos 2φ

]
uy =

λbx
4πc̄′11 sin 2φ

[
(c̄′11 − c′12) cosφ ln qt− (c̄′11 + c′12) sinφ tan−1

y2λ2 sin 2φ

x2 − λ2y2 cos 2φ

]
− by

4π

(
tan−1

2xyλ sinφ

x2 − λ2y2
+

c̄′211 − c′212
2c̄′211c

′
66 sin 2φ

ln
q

t

)
(3)

where

q2 = x2 + 2xyλ cosφ+ y2λ2

t2 = x2 − 2xyλ cosφ+ y2λ2

c̄′211 =
√
c′11c

′
22

λ =

(
c′11
c′22

)4

(4)

The strain field of the edge dislocation is then obtained by taking the derivatives of the dis-
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Figure 6: Capture probability of a SIA by an edge dislocation located at the origin with b = 1
3〈112̄0〉,

and line direction ξ = z. The anisotropy of the strain field is reflected in the anisotropy of the
capture probability.

placement fields as:

εxx =
∂ux
∂x

εyy =
∂uy
∂y

εxy =
1

2

(
∂ux
∂y

+
∂uy
∂x

)
εiz = 0 ∀ i ∈ {x, y, z} (5)

Using this strain field, we then set up a simulation bow with a single edge dislocation at the
origin, with its line direction ξ aligned along the Z-axis. We then followed the path of a single
SIA, starting at specific points in the simulation box, and counted the number of times a SIA was
absorbed by the dislocation. The results of such a calculation, computed over 8.6×105 simulations
are shown in figure 6.

3 Conclusions and Future directions

On the macroscale, we have demonstrated the coupling of polycrystal plasticity models with
mesoscale growth models. The VPSC framework has been modified to include the growth model
provided by ORNL, and the ability to swap it out for any other growth model that becomes avail-
able. On the atomistic side, we have demonstrated the capability to follow the dynamics of point
defects in an arbitrary strain field.

We plan to extend the atomistic capability to handle point defect clusters. We also plan to
compute similar quantities with Simon Philpott’s new potential. We expect to collaborate more
closely with ORNL to develop and improve upon their growth model, and feed it parameters
computed from atomistics.
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